博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
洛谷P2886 [USACO07NOV]牛继电器Cow Relays
阅读量:7218 次
发布时间:2019-06-29

本文共 3279 字,大约阅读时间需要 10 分钟。

题目描述

For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.

Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi  ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.

To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.

Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.

给出一张无向连通图,求S到E经过k条边的最短路。

输入输出格式

输入格式:

 

* Line 1: Four space-separated integers: N, T, S, and E

* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i

 

输出格式:

 

* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.

 

输入输出样例

输入样例#1: 
2 6 6 411 4 64 4 88 4 96 6 82 6 93 8 9
输出样例#1: 
10 题解: 一句话题意:给出一个有t条边的图,求从s到e恰好经过k条边的最短路。 a:是图的邻接矩阵,f是图中任意两点直接的最短距离、 floyd算法: f[i][j]=min(f[i][j],f[i][k]+f[k][j]); 一遍floyed后: f[i][j]是i到j的最短距离:中间至少1条边(连通图),最多n-1条边
floyd算法的变形:
a:是图的邻接矩阵,a[i][j]是经过一条边的最短路径。f[i][j]k的初值为∞
f[i][j]-1=∞;
f[i][j]1=a;    //经过一条边的最短路径
f[i][j]2=min(f[i][j]2,a[i][k]+a[k][j])=a*a=a2;//经过二条边的最短路径,经过一次floyd.矩阵相乘一次,f[i][j]2初值为∞。
f[i][j]3=min(f[i][j]3,f[i][k]2+a[k][j])=a*a*a=a3;//经过三条边的最短路径,经过二次floyd。f[i][j]3初值为∞
f[i][j]4=min(f[i][j]4,f[i][k]3+a[k][j])=a4;//经过四条边的最短路径,经过三次floyd,f[i][j]4初值为∞

    ...

f[i][j]k=min(f[i][j]k,f[i][k]k-1+a[k][j])=ak;//经过k条边的最短路径,经过K-1次floyd,f[i][j]k初值为∞ 而floyd的时间复杂度为O(n3),则从的时间复杂度为O(Kn3),非常容易超时。 所以我们可以用快速幂来完成。
f[i][j]r+p=min(f[i][j]r+p,f[i][k]r+f[k][j]p)
程序:
//洛谷2886 //(1)对角线不能设置为0,否则容易自循环。(2)数组要放在主程序外面 //(3)K条边,不一定是最简路 #include
#include
#include
#include
using namespace std;map
f;const int maxn=210;int k,t,s,e,n;int a[maxn][maxn];struct Matrix{ int b[maxn][maxn];};Matrix A,S;Matrix operator *(Matrix A,Matrix B){
//运算符重载 Matrix c; memset(c.b,127/3,sizeof(c.b) ); for(int k=1;k<=n;k++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) c.b[i][j]=min(c.b[i][j],A.b[i][k]+B.b[k][j]); return c;}Matrix power(Matrix A,int k){ if(k==0) return A; Matrix S=A; for(int i=1;i<=n;i++){ for (int j=1;j<=n;j++) cout<
<<" "; cout<
>1; } return S;}int main(){ cin>>k>>t>>s>>e; int w,x,y; memset(A.b,127/3,sizeof(A.b) );// 赋初值 n=0; for(int i=1;i<=t;i++){ //t<100,x<1000 点不是从1开始的,可以用map离散化,给点从1开始编号。n记录共有多少个点。 cin>>w>>x>>y; if (f[x]==0) f[x]=++n; if (f[y]==0) f[y]=++n; A.b[f[x]][f[y]]=A.b[f[y]][f[x]]=min(w,A.b[f[y]][f[x]]); } S=power(A,k-1);//快速幂.执行k-1次floyd矩阵乘 s=f[s]; e=f[e]; cout<

 

 

转载于:https://www.cnblogs.com/ssfzmfy/p/10740803.html

你可能感兴趣的文章
Perl的多进程框架(watcher-worker)
查看>>
phpMyAdmin 后台拿webshell
查看>>
Linux 关机 休眠, 关闭移动设备自动挂载 命令
查看>>
Html唤起手机APP,如果有就唤起,如果没有就跳到下载页。
查看>>
Java中File类如何扫描磁盘所有文件包括子目录及子目录文件
查看>>
VC++ 限制窗口的大小范围的方法
查看>>
结对开发-返回一个整数数组中最大子数组的和(首尾相接版)
查看>>
meanshift-聚类
查看>>
不要if else的编程
查看>>
rn.ShowDialog() == DialogResult.OK
查看>>
20160519
查看>>
SCU 3132(博弈)
查看>>
正则表达式
查看>>
delete archivelog all 无法彻底删除归档日志?
查看>>
Redis五大数据类型
查看>>
大型分布式网站架构技术总结
查看>>
矩阵求导与投影梯度相关问题
查看>>
SVN
查看>>
C语言编程写的一个http下载程序(王德仙)2012-04-08
查看>>
CCF201409-3 字符串匹配(100分)
查看>>